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We investigate theoretically the strong coupling between surface plasmon resonances (SPRs) and

absorption bands of hemoglobin. When the surface plasmon resonance spectrally overlaps the

absorption bands of hemoglobin, the system is strongly coupled and its dispersion diagram exhibits

an anti-crossing. Working in the conditions of strong coupling enhances the sensitivity of a SPR

sensor up to a factor of 10. A model for the permittivity of hemoglobin, both in oxygenated and

deoxygenated states, is presented and the study is carried out for both angle and wavelength

modulated SPR sensors. Finally, a differential measurement is shown to increase the sensitivity

further. VC 2011 American Institute of Physics. [doi:10.1063/1.3626786]

I. INTRODUCTION

Biosensors based on surface plasmon resonance (SPR)

have been investigated extensively over the past few deca-

des.1–6 It is now well understood that the excitation of SPRs

leads to a large local field enhancement,3,7 which can facili-

tate the sensing,1,2,4,5 nonlinear optical,8,9 and cavity QED

applications. Thus a change in the refractive index due to the

presence of a biological entity causes a shift of the resonance

position. By measuring this shift, one has an indication about

properties such as refractive index, concentration, etc. of the

biological entity. Some of the most prominent applications

of such SPR sensors can be found in detection of biomole-

cules, viruses, bacteria, toxins, pesticides etc., especially

when the concentration of the analyte is very low, parts per

billion level or lower.4 Most SPR sensors have real time

sensing ability that has been widely utilized for studying

adsorption kinetics of molecules to a surface,2,5 protein-

membrane interactions,10 and live single cell imaging.11

Boussad et al. showed that it is also possible to detect

changes in the conformation and the electronic state of redox

proteins through multiwavelength SPR spectroscopy that is

beyond the capabilities of optical absorption spectroscopy.12

Usually the SPR sensing does not require the antibody

layer on the metal film to have optical resonances at the

wavelength of the SPR. However, past studies have reported

an enhancement in the sensitivity, if the antibody coating

layer used for the detection of a specific antigen has an

absorption band in the vicinity of the SPR resonance.13–17

Moreover, Nakkach et al. showed that the reflectivity varia-

tion can be enhanced by a factor of almost 160% by using

appropriate dye molecules conjugated to the analyte (in this

case DNA).17 It is worth mentioning that in these studies

strong interaction or coupling between the absorption bands

of the antibody layer and the surface plasmon was not

observed.13,15–17 On the other hand, several studies have

dealt with strong coupling between surface plasmons and

strongly absorbing dye molecule but these studies have not

illustrated how the strong coupling phenomenon is favorable

for sensing applications.18–23

The phenomenon of strong coupling, which is typically

characterized by an anti-crossing or avoided boundary cross-

ing, is very well known and has been observed in different

physical systems like cavity QED,24–29 plasmonics, and pho-

tonics30–33 and has been applied for the development of prac-

tical applications like plasmonic switches34 and optical

rulers.35 From the best of our knowledge, no studies have

shown strong coupling between surface plasmons and com-

mon metallo-proteins (which generally have weak absorption

bands as compared to dye molecules) like hemoglobin, myo-

globin, etc. In this paper we show theoretically that it is pos-

sible to achieve strong coupling between surface plasmon

and the weak absorption bands of hemoglobin (Hb). More-

over, we demonstrate how the presence of strong coupling

between hemoglobin and surface plasmon can enhance the

sensitivity of a standard SPR sensor for both wavelength and

angle modulation modes of operation. It should be noted that

oxygen detection using standard SPR (in which the metal is

coated with a monolayer of the antibody) is extremely diffi-

cult since the oxygen induced refractive index change is neg-

ligibly small and thus the shift of the SPR is smaller than the

detection limit of most instruments. Note that except for a

few studies, where fluorescence enhancement from metallic

surface was used, oxygen sensing has remained a challeng-

ing problem.36 In this paper we address this issue by propos-

ing a method of detection for oxygen exploiting the

enhanced sensitivity of a SPR sensor provided by strong cou-

pling between the surface plasmon and Hb absorption bands.

The structure of the paper is as follows. In Sec. II we

describe the system under study and recall the transfer matrix

formalism for the analysis of such a layered structure. In the

following section, we present the simulation results and dem-

onstrate how the strong coupling can lead to enhanced sensi-

tivity. Lastly, we summarize the main results of our

investigation in Sec. IV.

II. FORMULATION

Consider the system shown in Fig. 1. The layered struc-

ture consists of a 50 nm silver (Ag) film and a 100 nm
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Hemoglobin (Hb) layer stacked on top of a SiO2 slab

(e¼ 2.25). The dielectric function of silver is modeled using

the data given by Johnson and Christy.37 The total concentra-

tion of Hb molecules in the Hb layer is kept fixed at 25 mM

for all the simulations (Hb concentration in whole blood

varies between 8 and 15 mM). We introduce a parameter fr
(0� fr� 1) that gives the fraction of Hb molecules that are in

the oxygenated state, i.e., the Hb molecules that have O2

bound to them. Therefore,

fr ¼
noxy

noxy þ ndeoxy
; (1)

where noxy and ndeoxy are the number of oxygenated and

deoxygenated Hb molecules in the film, respectively. For

example, fr¼ 1 implies a completely oxygenated Hb layer

whereas fr¼ 0 implies a completely deoxygenated Hb layer.

The dielectric function of Hb (for completely oxygenated or

deoxygenated Hb) is modeled using the following empirical

relation assuming a superposition of Lorentzian responses at

three distinct frequencies

ea ¼ ew þ
�2

p1

�2
01 � �2 � ic01�

þ
�2

p2

�2
02 � �2 � ic02�

þ
�2

p3

�2
03 � �2 � ic03�

; (2)

where a is oxy (oxygenated Hb) or deoxy (deoxygenated

Hb), ew is the dielectric constant of water (ew¼ 1.7689), and

� is the frequency of the incident light. The parameters �0m

(¼ c/k0m; c is the speed of light in vacuum), �pm and c0m

(where m¼ 1, 2, 3) correspond to the position, strength, and

damping of the various resonances, respectively. For the

case when the Hb film is partly oxygenated (0< fr< 1) we

use a linear relation between eoxy and edeoxy to obtain the

effective dielectric function of the Hb film:

eeff ¼ freoxy þ ð1� frÞedeoxy: (3)

The values of the parameters used in Eq. (2) are given in

Table I for Hb concentration of 25 mM, they were obtained

by comparing the absorption spectra obtained from Beer-

Lambert law (using the experimental data of the absorption

coefficient38) to the absorption spectra obtained using the

transfer matrix method39,40 with normal incident light for a

100 nm film of Hb suspended in water, i.e., both the incident

and the emergence medium is taken to be water.

The resonances at k01 and k02 (k03) correspond to the

Q-bands (Soret band) of the absorption spectra of Hb.

Q-bands of the absorption spectra are of key interest in this

paper because they exhibit a large change as a function of

the oxygenation state of the Hb layer, i.e., change in fr. It

should be noted that in case of deoxygenated Hb, the reso-

nance at k02 is very weak as compared to the resonance at

k01; whereas in case of oxygenated Hb the two resonances

(at k01 and k02) are of comparable strength. Figure 2 shows

the real and imaginary parts of the dielectric function of both

oxygenated and deoxygenated Hb films. The effect of the

absorption peaks on the effective dielectric function dimin-

ishes from the resonances toward higher wavelengths k.

Above k¼ 800 nm the difference between the imaginary

parts of eoxy and edeoxy is negligibly small (� 5.36 x 10�4). In

this regime i.e., when k� 800 nm, there is a minimal contri-

bution of the absorption bands of Hb toward the shift in the

SPR peak caused by a change in fr.
Let the structure in Fig. 1 be illuminated by a TM polar-

ized plane wave (electric field in the plane of incidence)

from the SiO2 side. In the Kretschmann-like configuration,

the surface plasmon is generated at the Ag-Hb interface.41

As the Hb layer experiences the SPR-induced large local

field enhancement, one expects a strong coupling of the Hb

FIG. 1. Geometry of the system.

TABLE I. Values of the various parameters used to fit the permittivity of Hb.

�p1 �p2 �p3 c01 c02 c03 k01 k02 k03

(THz) (THz) (THz) (THz) (THz) (THz) (nm) (nm) (nm)

Oxygenated Hb 23.5 15.8 87.0 32.5 15.0 39.0 541.0 577.0 415.0

Deoxygenated Hb 35.5 3.0 64.5 66.0 10.0 20.0 556.0 586.0 434.0

FIG. 2. (a) Real and (b) imaginary parts of the dielectric function of Hb at a

concentration of 25 mM, in the oxygenated (fr¼ 1) and deoxygenated

(fr¼ 0) states.
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absorption bands with the SPR mode. This is further accentu-

ated by the spectral proximity of these resonances.

The signature of this strong interaction can be seen in

the reflection spectrum of the layered structure. To compute

the reflection spectrum we use the transfer matrix formula-

tion and recall briefly here the characteristic matrix results

for the complex reflection (r) and transmission coefficients

(t) for a layered structure39,40:

r ¼ ðm11 þ m12pf Þpi � ðm21 þ m22pf Þ
ðm11 þ m12pf Þpi þ ðm21 þ m22pf Þ

;

t ¼ 2pi

ðm11 þ m12pf Þpi þ ðm21 þ m22pf Þ
;

(4)

where mq,r (q,r¼ 1,2) are the matrix elements of the total

transfer matrix of the layered structure, which can be found

in Ref. 39 and for TM polarization

pk ¼
ffiffiffiffiffiffiffiffiffiffiffi
lk=ek

p
cos hk; k ¼ i; f : (5)

Here hk are the angles of incidence (k¼ i) and emergence

(k¼ f ) and ek and mk are the dielectric constant and relative

permeability of the incident (k¼ i) and the emergent media

(k¼ f ), respectively. The reflectivity (R) and transmissivity

(T) from the layered structure are given by

R ¼ rj j2;

T ¼ pf

pi
tj j2:

(6)

Since the total energy in the system is conserved, we have

the following relation for absorption (A) by the layered struc-

ture A¼ 1-R-T.

One main advantage of using surface plasmons gener-

ated on thin metallic films is derived from their strong

dispersion. As a consequence, the position of the resonance

can be varied easily by changing the angle of incidence. This

way one can spectrally overlap the SPR with the Hb absorp-

tion bands. Note that similar strong dispersive properties do

not exist in the localized plasmons of metal nanoparticles or

metal nanocomposites. The locations of the Hb resonances

are more or less insensitive to the angle of incidence, while

their comparative strengths can be controlled by concentra-

tion of Hb molecules in the Hb layer. On the other hand, the

SPR location is very sensitive to the angle of incidence. The

latter can be moved around by varying the angle of incidence

resulting in strong coupling with the individual Hb modes

for any value for fr. In the next section, we present numerical

results demonstrating this strong coupling.

III. RESULTS AND DISCUSSIONS

Figure 3(a) shows the dispersion relation (plot of R versus

h and k) of a surface plasmon excited on a thin metal film (ge-

ometry is the same as shown in Fig. 1, except that the Hb layer

is absent). Figures 3(b) and 3(c) show the dispersion diagram

of oxygenated and deoxygenated Hb layers, respectively (ge-

ometry is same as shown in Fig. 1 except that the Ag layer is

absent). In this case we see that the absorption bands of Hb

(both fr¼ 0 and fr¼ 1) are non-dispersive, i.e., exhibit no

angular dependence of the resonance positions. Furthermore,

the absorption band in case of deoxygenated Hb is broader,

compared to that of oxygenated Hb. By looking at the disper-

sion diagrams of the individual resonances, i.e., the surface

plasmon resonance or the absorption bands of Hb (oxygenated

or deoxygenated), it is clear that the individual systems do not

possess an anti-crossing feature in their dispersion diagrams.

Figures 3(d) and 3(e) shows the dispersion diagram of the

complete system (Fig. 1) for the cases when fr¼ 1 and 0,

respectively. When fr¼ 1 the dispersion diagram exhibits two

FIG. 3. (Color online) Dispersion diagram of (a) a thin silver film placed on a SiO2 substrate, (b) oxygenated Hb layer placed on top of SiO2 slab, (c) deoxy-

genated Hb layer placed on top of a SiO2 slab, (d) complete system (Fig. 1) when fr¼ 1.0, and (e) complete system (Fig. 1) when fr¼ 0.
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anti-crossings at the wavelengths of 541.0 and 577.0 nm,

which correspond to the absorption bands of uncoupled oxy-

genated Hb. Similarly a single anti-crossing can be seen at

around k¼ 556.0 nm when fr¼ 0, which corresponds to the

absorption band of deoxygenated Hb. The presence of this

kind of anti-crossings in the dispersion diagram is a clear indi-

cation of strong coupling between the surface plasmon and the

absorption bands of oxygenated or deoxygenated Hb. The

resonances of the strongly coupled system are very different

from those of the uncoupled system. For example, the absorp-

tion bands of oxygenated or deoxygenated Hb shift due to cou-

pling. Another effect of coupling is that the absorption bands

that are generally weak can be enhanced so that their detection

becomes easier. The anti-crossings are more prominent in the

case of oxygenated (Fig. 3(b)) compared to deoxygenated Hb

(Fig. 3(c)) since the absorption bands in the former are sharper

than in the latter. Another point of interest is that for a spectral

region that is away from the anti-crossing region, i.e., for

k> 800.0 nm, the two dispersion diagrams are very similar.

Now we demonstrate for both wavelength and angle

modulated SPR sensors,42 that the shift of the resonance dips

can be enhanced by working near the region of the strong

coupling. Let us first consider a wavelength modulated SPR

sensor, in which the angle of incidence is kept constant but

the wavelength of incident light is changed so that reflectiv-

ity as a function of wavelength is measured. We compute the

spectra at two different angles, hi¼ 72.9� and 66�. When the

angle of incidence is 72.9� the system is in the strong cou-

pling regime, i.e., the surface plasmon mode and the absorp-

tion bands of Hb (oxygenated or deoxygenated) strongly

couple, whereas when the angle of incidence is 66� the sys-

tem is decoupled. Figure 4(a) shows the reflectivity as a

function of wavelength for the two chosen angles for both

fr¼ 0 and 1. From the figure it can be seen that three, respec-

tively, two resonances are observed in the case of oxygen-

ated, respectively, deoxygenated Hb. We observe only two

resonances in the case of deoxygenated layer even though it

possesses three resonance dips (see Eq. (2)) since the reso-

nance at k¼ 586.0 nm is very weak and does not show up in

the reflection spectra of the coupled system. When the sys-

tem is strongly coupled, i.e., the angle of incidence is 72.9�,
we see that when fr is changed from 1 to 0 the two resonan-

ces P1 (at 587.6 nm) and P2 (at 564.8 nm) converge to the

resonance at 576.0 nm, whereas the resonance P3 moves

from 541.7 nm to 546.4 nm. The position of the shoulder is

given by the wavelength when @2R
�
@k2 is maximum in the

vicinity of the shoulder. Considering the decoupled case, i.e.,

when the incident angle is 66�, the resonance peak P4 shifts

from 842.0 nm to 836.0 nm when fr changes from 1 to 0.

Figure 4(b) gives the relative shifts of the resonances as a

function of the oxygenation of the Hb layer, i.e., fr varies

from 0 to 1. The shift is measured by taking fr¼ 0 as refer-

ence. From the figure it can be seen that the net shift (11.87

nm and 10.9 nm for P1 and P2 resonances) when the system

is coupled is higher than when the system is decoupled (6.0

nm shift for P4 resonance). The peak P2 is followed from

fr¼ 0.1 and not from fr¼ 0 because at very low values of fr,
distinguishing the resonances P1 and P2 becomes almost

impossible. Also, rather than just looking at the shift of one

resonance, we can look at the wavelength difference between

two resonances, say P1 and P3, i.e.,

Dk ¼ kP1 � kP3ð Þ � kP1 fr ¼ 0ð Þ � kP3 fr ¼ 0ð Þð Þ: (7)

Such a differential measurement appears to be even more

sensitive, as visible in Fig. 4(b), where the P1-P3 data shows

the strongest wavelength shift as a function of fr.
An alternate way of determining the change in fr can be

by tracking the change in reflectivity of the resonance dips,

as shown in Fig. 4(c). We can clearly see that if we measure

the change in the reflectivity at the resonance P3 as a func-

tion of fr, the change in reflectivity is much larger

(DR¼ 0.16) than in the decoupled case (DR¼ 0.0244). Even

when following the other two resonances, i.e., P1 and P2, for

f r> 0.3 the change for these two resonances (DR¼ 0.114

and 0.068 for P1 and P2, respectively) is greater than that of

the uncoupled case (DR¼ 0.0244).

Let us now study the effect of strong coupling on the

angular shifts for another commonly used mode of operation

SPR sensors, namely angle modulation. In this mode of opera-

tion the incident wavelength is kept fixed (generally a laser

source like He-Ne laser is used), whereas the angle of inci-

dence is continuously varied. We considered for computation

four different incident wavelengths: 541.0 , 577.0, 556.0, and

800.0 nm. The first two wavelengths correspond to the absorp-

tion Q-bands of oxygenated Hb, whereas the third wavelength

corresponds to the absorption Q-band of deoxygenated Hb.

The last wavelength was chosen such that the system is not

strongly coupled at this wavelength. Figures 5(a)–5(d) show

the reflection spectra as a function of angle of incidence for

the four different wavelengths. It is seen that the resonances

are broader for wavelengths of 541.0 nm (Fig. 5(a)), 556.0 nm

(Fig. 5(b)), and 577.0 nm (Fig. 5(c)), compared to 800.0 nm

(Fig. 5(d)). Figure 5(e) shows the angular shift of the reso-

nance as a function of the oxygenation of the Hb film, i.e.,

when fr is varied from 0 to 1. From the figure it is apparent

FIG. 4. (Color online) (a) Reflection spectra for two different angles of incidence; (b) shift of the resonance peak as a function of oxygenation for both angles

of incidence; and (c) change in reflectivity as a function of the fraction of oxygenation for both angles of incidence.
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that when the wavelength is near the anti-crossing region, a

larger angular shift (Dh¼ 0.787�, 0.666�, and 0.139� for wave-

lengths of 541.0 nm, 556.0 nm, and 577.0 nm, respectively) is

observed compared to the case when the chosen wavelength is

away from the anti-crossing region (the shift is 0.073� only for

k¼ 800 nm (inset of Fig. 5(d))). It can be seen that when

strong coupling is present in the system, the angular shift is at

least enhanced by a factor of two and, if the optimal incident

wavelength is chosen, the enhancement factor can reach 10

times compared to the decoupled case. As in the case of wave-

length modulation, we can also track the change of reflectivity

at the resonance dip to obtain an estimate of fr. This is shown

in Fig. 5(f), which reports the reflectivity change of the reso-

nance as a function of fr for the different incident wavelengths.

It can be seen that the reflectivity change of the resonance is

enhanced by the presence of strong coupling. In that case, the

reflectivity change of the resonance dip is 0.050, 0.110, and

0.099 for incident wavelengths of 541.0 nm, 556.0 nm, and

577.0 nm, respectively; whereas for k¼ 800.0 nm the change

is only 0.038 when fr is varied from 0 to 1.

By measuring the wavelength shift or the angular shift of

the resonance dip, the change in the fraction fr or Dfr can be

obtained. Thus the change in concentration of Hb molecules

that has oxygen (O2) bound to them can be inferred from the

value of Dfr. Let us carry out a brief discussion on the concen-

tration of O2 that can be detected easily using both the coupled

and the decoupled systems. If Dfr is being measured through

wavelength shift or angular shift of the resonance dip, then the

resolution of the instrument determines the lowest possible de-

tectable concentration of O2. Since, 1 mole of Hb molecules

can bind to four moles O2 molecules, the minimum resolvable

concentration of O2 (CO2,min) is

CO2;min ¼ 4ðDfrÞminC; (8)

where (Dfr)min is the minimum change in the fraction fr that

can be resolved from the shift of the resonance dip and C is

the total concentration of Hb molecules (C¼ 25 mM). First

consider a wavelength modulated SPR sensor with a wave-

length resolution of 0.2 nm. In this system for a wavelength

shift of 0.2 nm to occur fr changes by 0.01 (following reso-

nance P3, Fig. 4(b)) and 0.035 (following resonance P4, Fig.

4(b)) for the coupled and the decoupled case, respectively

(note that the initial value of fr is 0). When the system is

strongly coupled, i.e., the incident angle is 72.9�, then the

value of CO2,min is 1.0 mM whereas when the system is not

strongly coupled, i.e., the incident angle is 66�, then the value

of CO2,min is 3.5 mM. The minimum detectable amount in the

presence of strong coupling is four times lower than the

decoupled case. Now consider the case of an angle modulated

SPR sensor having an angular resolution of 0.001�. A angular

shift of 0.001� is caused when fr changes by 0.00125

(k¼ 541.0 nm, Fig. 5(e)) and 0.01400 (k¼ 800.0 nm, Fig.

5(e)) for the coupled and the decoupled case, respectively

(note that the initial fr value is 0). When the system is strongly

coupled, i.e., the incident wavelength is 541.0 nm, then the

value of CO2,min is 0.125 mM whereas when the system is not

strongly coupled, i.e., the incident wavelength is 800 nm, then

the value of CO2,min is 1.4 mM. In this case the minimum de-

tectable amount in the presence of strong coupling is almost

10 times smaller than in the decoupled case.

VI. CONCLUSIONS

In conclusion, we have shown that strong coupling

between a surface plasmon resonance and the absorption

bands of metallo-proteins such as Hb is feasible. Further-

more, it has been demonstrated that this strong coupling can

be exploited to enhance the sensitivity of a conventional

SPR sensor. Numerical simulations based on transfer matrix

approach show that for a wavelength modulated sensor the

resonance shift is enhanced by a factor of 3, whereas in the

case of angle modulated sensor the resonance shift can be

enhanced by a factor of 10. Finally this sensitivity enhance-

ment can be exploited for oxygen sensing.
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FIG. 5. (Color online) Reflectivity from the layered structure for four different wavelengths (a) 541 nm, (b) 556 nm, (c) 577 nm, and (d) 800 nm. (e) Angular

shift as a function of oxygenation of the Hb layer for the four wavelengths; (f) change in reflectivity as a function of the fraction of oxygenation.
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