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Abstract

The accepted model for light emission and propagation in organic LEDs (OLED) which consists of several optically
thin functional layers deposited on athick substrateisa classical dipole located in the emitting layer. The propagation

of the emitted light is commonly described by a Fourier expansion of the dipole field into plane waves which represent
the various radiating and bound modes of the layered structurein k-space. To calculate the electric and magnetic fields
inside and outside the LED an integration over theindividua plane waves hasto be performed. This entails numerical
difficulties which can be overcome el egantly with the so-called Green’ stensor approach for stratified media recently
devel oped by the second author. In our contribution we demonstrate the applicability of this method to the computation
of dectromagnetic field digributions in organic LED sructures. Visuaizations of typical field distributions arising from
individual dipoles are presented and discussed thus allowing amore intuitive understanding of effects relating to dipole
location and orientation and materia absorption. Furthermoreit is shown that scattering of bound modes by particle like
inhomogeneities of the layer structure can be effectively modelled with the Green’ s tensor approach. Visualizationsare
presented and discussed with regard to increased light extraction.
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1. Introduction

Improved light extraction isakey factor for increasing the efficiency of solid state light sources available on the
market today. Their lumen efficiency already surpasses incandescent sources by a factor of 2 and with further
improvements light emitting diodes could become areal competitor for fluorescent lamps in the near future. But even in
state of the art devices the mgjor part of the internally generated photons remains trapped in the device: extraction
efficiencies vary between 10 to 50%, depending on the device structure and the emitted wavelength. For an overview on
light extraction techniques from inorganic light emitting diodes we recommend chapter 5in *. Organic light emitting
diodes are described in 3. For areview of light extraction from organic LEDs see > %7,

The basic reason for light being trapped in the device is the high refractive index of thelight emitting, cladding and
substrate layers ® 7 : for inorganic LEDs thisindex can reach values well above 3 whereas for organic LEDsiit can go up
to 2. Light emitted into these layers is then caught by total internal reflection at the interfaces between the high and low
index media and can only escape to the outside world through narrow angular cones perpendicular to the chip surfaces.
Simple considerations show that thisisthe case for only a fraction of about 1/n? of the generated photons, wheren isthe
index of refraction of the emitting medium. In the framework of this simple geometrical optics modd, light extraction
can be modelled quite accurately by raytracing techniques assuming isotropic emission, particularly for inorganic LEDs
and light trapping by thin film solar cells®.
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For more advanced designs like Resonant Cavity LEDs, °where the emitting layer is surrounded by several optically
thin layers, thissimple model isno longer valid asinterference effects have to be taken into account. All the morethis
applies to organic LEDs which consist basically of alight emitting layer with a thickness of a few hundred nanometers
sandwiched between two metal e ectrodes of comparable dimensions 2, one of which istransparent, the whole stack
being deposited on athick glass substrate. The full Maxwell equations have to be solved for a stratified medium made
up by the various layers for adipoleradiator located in the emitting layer in order to describe light emission and
propagation in such devices correctly. This classical problem of mathematical physics '’ was already tackled in the
beginning of the last century by Hermann Weyl and Arnold Sommerfeld, who gave solutions in terms of anaytically
defined integralswith highly oscillating integrands which numerical evaluation proves to be difficult. Inamore
mathematical language the problem amounts to solving the Helmholtz wave equation in alayered medium with
arbitrary permittivities (including absorbing and anisotropic media) for each layer, the right hand side being given by a
delta function describing the pointlike dipole source. Asamatter of fact thisisa standard problem in mathematical
physics, which solution is given as explained in the following sections by the Green’ stensor if we take the vectoria
nature of the fields into account. Providing another instance of “the unreasonable effectiveness of mathematicsin the
natural sciences’ ** the Green’ s tensor and the plane wave expansion associated with it contains al the physics of the
problem like the existence of guided modes and plasmon-polariton modes arising from the metal electrodes **
Knowledge of the Green’ stensor a so allows to compute the spontaneous emission rate of the dipolein the framework
of guantum electrodynamics. Compared to other established methods of solving the Maxwell equations for the emission
problem in layered media like the Finite DifferenceTime Domain or modal methods, the Green’ s tensor makes the
physical problem more transparent and tractable. Furthermore the method isnot restricted to lossless and isotropic but
can also deal with absorbing and anisotropic media.’® . A further advantage of the Green’ stensor approach is the
possibilty to model light scattering by particle-like inclusions in the layers, including photonic band gap structuresto
enhance light outcoupling > 8. But one hasto keep in mind that light extracted from the thin layersinto the thick glass
substrate can still be caught by total internal reflection at the glass/air interface. This can be mitigated by
microstructuring this surface .

In this contribution we would like to attract the attention of the reader to anumerically very efficient and reliable way
of calculating the Green’ s tensor *° and demonstrate how it can be used to model light emission and propagation in
organic light emitting diodes. In this way we want to help to fulfil “The promise of solid state lighting for Genera
[llumination” as advocated in the OIDA/DOE report 2 where quantitative model ling for optimization of light emitting
diodesis strongly recommended to progress towards higher lumen efficiencies of solid state light sources.

The paper is organized as follows: in section 2 we introduce the Green’ stensor and outline an efficient numerical
scheme for its computation devel oped a few years ago by the second author and co-workers. We then discuss how it can
be used to model scattering structuresincluded in the layers and how the computational load of these cal culations can
be greatly reduced by exploiting the rotational and trandational symmetries of the problem.

Section 3 gtarts with some generd considerations of light emission and propagation in organic LEDs. Visuaizations of
the Poynting vector fields describing energy flow in typical OLEDs are presented. We then give some examples of
scattering calculations performed for single and small arrays of cylinders or spheres of subwave ength dimensions and
present some intriguing pictures of the energy flows arising from the scattering.

The conclusion points out directions for further work aso in comparison to other approaches to describe light
outcoupling by biperiodic grating structures, our aim being to establish a comprehensive quantitative model for light
extraction from OLEDs.

2. Maoadelling Light emission and propagation in stratified media
In this section we explain how the Helmholtz wave equation can be solved for a dipole emitter embedded in alayered
medium by the Green’stensor. Only the bare outlines can be given, for more details the reader should consult the
references 19, 20, 21, 22, 23, 24:
2.1 The Green’stensor approach to dipole emission in layered media

The presentation follows *"*° . Consider aradiating dipole with dipole moment p embedded in amedium of constant
permittivity € at location r’. Itselectrical field
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E(r,t) =E(r)e’™ (2.11)

is then given by the Helmholtz equation
xx E(H) k§ gE(F ® (r-r). (212)

€p denotes the permittivity of the medium and ké = (,02 &g and O the Dirac function. It iswell known that the
solution of thisequation is

E(r)=G(r,r')p, (213)

where the 3x3 Green’stensor is specified by

,3-3kgR -kgR?

with R =r -r’
2pn2 24
kgR kgR

RR

G(rr)=|1+ XpPkeR)
’ 4TR

(2.1.4)

;I;he Green’stensor contains both anear and a far field component (for an interesting discussion with visualizations see

).

Let usnow consider alayered medium where the permittivity is a piecewise constant function of z but does not depend
on x and y. We assume that there are only a finite number of layers bounded from above and below by infinite media of
constant permittivity and that the dipole is embedded in one of the layers. To obtain a solution of the Helmholtz
equation , i.e. the Green’ stensor for the layered medium, we observe that the electromagnetic fields from the dipole are
scattered at the layer interfaces. To account for this we consider the plane wave expansion of theform

G (rr)= 1L & S5 ep(i, (x =) ik, (y =) ik, |z 2k, ck
ij rr _y”k_z 1] k—éexp(l x(X X) Iy(y Y) |z‘z ‘) XUy
(2.1.5)
Theindicesi and j can take the values X,y and z and
k, =sign(z-2) k3 —k2 —kZ . 216)
For i=j=z there isan additional term
_%50 - r'). (2.17)
kB

We can now match these plane waves in each layer | with corresponding up and down going plane waves of the form

Aﬁ(kz)exp(ikx (x=X) +iky (y =Y) zik,(z =Z)) (2.1.8)

with
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k,=yk?-k2 K2 k?=0ufg (2.1.9)

to solve the source free Helmholtz equations. By the standard matching procedure for the electric and magnetic fields at
the layer boundaries the matrix coefficients A;; can be obtained for each layer asrational agebraic functions of k,
using a sandard recursive procedure. In this way a plane wave representation G, of the Green’ sfunction of the layered
medium is obtained in each layer | including the emitting layer.
Thereal space Green’sfunction isthen given by integration of the plane waves. In cylindrical coordinates (p, ¢, z) the
integration can be reduced to the eval uation of the so called Sommerfeld integrals whose integrands are given by
products of rational algebraic functions and highly oscillating Bessel functions. The efficient numerical evaluation of
these Sommerfeld integral s requires sophisticated numerical techniques 2> 2" which description is beyond the scope of
this paper. With these numerical integration techniques fast and reliable evaluation routines for the Green’ stensor can
be constrl%cted. On amodern PC with a processor speed of 1.6Ghz one evaluation of the Green’ s tensor takes about
50msec. .

The power W radiated by the dipole source p into the layered structure can also be readily evaluated from the Green’s
tensor : from electromagnetic theory it is given by

W =0.5wImp” [EE(rdip) =0.5 wimp’ (rdip,rdip) p (2.1.10)

If the Green’ stensor is decomposed in a“direct” and “reflected” contribution G = Gp + Gg arising from the scattering
at the layer boundaries we obtain

W =0.5wimp” KBD(rdip,rdip) [P +0.5 wmp’ [CER(rdip,rdip) IPERTY

This shows that the power radiated by the dipole (which gives its quantum mechanical decay rate) is strongly
influenced by its layered environment.

2.2 Modelling of scattering structuresfor light outcoupling

One possibility to enhance light outcoupling from organic LEDs isthe incorporation of scattering structures into the
layers, to tap the guided and plasmonic modes & > 18223332 Tq pe effective the permittivity of these structures should
differ from the permittivity of the layer they are embedded in. One can think of small spheres or cylindersarranged in a
periodic fashion to produce photonic bandgap effects preventing the propagation of guided modes. Or of simple
particles for scattering the energy caught in the plasmonic modes. In this section we want to show how the Green’s
tensor for the gtratified medium describing the organic light emitting diode gives a very effective meansto perform such
calculations %2,

Consider small particlelikeinclusionsin the layered medium like shown in fig. 4 and let AS(I’) =g ifrislocated
inlayer land AE(r) =€, — & if rislocated in particlep and layer I

Let Edip(r) denote the field produced by the dipole. Thetotal field E(I') can then be obtained from theintegral
equation
E(r)=E*(r)+ [ drG(rr)kjoe(r)E(r), 2.21)
scatter
volume

where G isthe Green’ stensor of the stratified background introduced in the previous section. Thisintegra equation
looks deceptively simple. Unfortunately it isnot at al obvious how to treat the singularity of the Greens function in the
integrand for r=r’. The usual procedure isto apply some averaging of the Green’ stensor in asmall volume around the
singularity to keep theintegral meaningful %
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Remarkably the integration extends only across the volume of the scatterers which facilitates the solution
considerably. Other methods need to discretize the whole domain under consideration and introduce artificial boundary
conditionsto limit its extension. A further advantageis that thetotal field is aready determined by the values it takes on
the scattering volumes and therefore one needs to solve the integral equation only inside the scattering volume. In the
exterior the electrical field can be obtained by direct integration.

To solve theintegral equation numerically one subdivides the scattering volumes into elementary scattering volumes

V; centered around locationsr; which linear dimensions should be in the order of )\/:l.o1 /‘AS‘ , Where A isthe free
space wavelength of the dipole. The discretization then gives a linear system of equations of the form

E=E™+ ¥ G(nr) K3V, e(r))E; +S Ag(r)E;. (222)

sitesj#i

The matrix S describes the averaging performed on the sngular volume and is given by a multiple of the identity
matrix . Depending on the size and number of the particles employed, this gives a dense linear system of the form
Ax=y with thousands of variables. Such systems can be solved efficiently by iterative methods % which require the
efficient evaluation of the matrix vector product Ax. For a system with 10* scattering sites for instance we would have
to eval uate the Green’ s tensor 10° times which at the rate of ten eval uations per second would take several thousand
hours and require many GB of storage. Fortunately there is a Smple way to overcome this obstacle, as described in the
next section.

2.3 Reducing the number of Green’stensor evaluationsfor a given problem

In the following we explain how to reduce in a very considerable way the number of eval uations of the Green’s tensor
for a given problem with or without scattering: Assume for instance we want to cal culate Poynting vector field
describing the energy flow arising from a single dipole. Then onefirst hasto calcul ate the e ectric and magnetic field in
the points of interest and then form their vector cross product. If we want to compute the field distribution on a dense

grid of points I; = (Xi ,yi,z) I =1,...,N inahorizonta plane given by z=const caused by a dipole source
located at I'g = (xS,yS, ZS),wehavetoevaluatetheGrem’stmsor G(I’i ,I’S) 1=1..,n.

If nisinthe order of millions (grids with 1000 by 1000 points) this would require along computation time even if one
evaluation only took a fraction of a second on a fast personal computer. Fortunately this computational load can be
decreased by orders of magnitude by exploiting the trandational symmetry in the x-y plane and the rotational symmetry
around the z-axis of the layered medium which are inherited by theGreen’ stensor:

G(ri’rs) = G(Xi’yi ’Zi ’Xs’ys’zs) =G(O’O’Zi’xs _Xi’ys _yi ’Zs) (231)

by trandational symmetry. Defining the horizontal distance between r; and rs by

Ri = (xi =X +(y; =¥s)? (232)
and exploiting the rotational symmetry around the z-axis, we obtain
G(r; rs) =DgG(0,0,7,R;,0,z,)D _g (2.33)

where
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cos@ -snB O
Dg=|sin@ cos6 O with cosez% andsinez%
0 0 1

Hence by precomputing the Green'stensor G(0,0,z;,R,0,2) asafunction of Rin closely spaced intervals (say
1nm) in therange min Ri ...Max Ri and storing the values in core memory (only Gy1, G2, Gss, Gs1 and Giz3 being

not zero), one can easily obtain G (I’i ) I‘S) from (2.3.2) and (2.3.3) by linearly interpolating between two neighbouring

distance values. If we consider for instance aregular grid with 1000 by 1000 20nm grid cells we have to perform about
30000 Green’ stensor evaluationsinstead of one million!

Clearly this approach also applies to the case when al field points are located on one horizontal plane and all dipole
sources on another horizontal plane. If we subdivide the scattering structures such that the el ementary scattering
volumes are all arranged in distinct horizontal planes, the matrix e ements appearing in the integral equation can all be
precomputed for each combination of planes. The advantage of thisis twofold: firstly not al the matrix elements have
to be stored (thus allowing systems with many elementary scattering volumes) and secondly the matrix vector products
needed to solve (2.2.2) iterativel y can be calculated easily on the fly if the volumes are arranged plane by plane. This
enables the application of iterative linear solvers also for complicated systems.

3. Maodel calculations and examples

In this section we apply the Green’ stensor to the emission and propagation of light in organic LEDs. Thefirst part
treats LEDs without scattering particles and offers visualizations of the power flow in atypical OLED. The following
part gives some examples of the effect of scattering on light outcoupling.

3.1 Modelling Light Propagation in unperturbed media

The plane wave spectrum of the dipole with moment p describes how the power radiated by the dipole is shared by the
radiating, leaky and guided modes. The power going into a particular plane wave (K , ky) can be obtained from the
formula(cf. (2.1.11))

W (K, .k, ) =050imp” Gy (ky.ky ) P +050mp’ Gg(k,k,) B @11

G p denote the plane wave spectrum of the direct part and G R Of thereflected part given in (2.1.5) and (2.1.8) By

averaging the dipole positions and performing the respective integrals numerically, one can evaluate the power carried
by the various modes and the angular spectrum of the dipol e radiation escaping from the device. For examples we refer
to the publications ® * . To obtain the field distributionsin the device * one needs to evaluate the full Green’s tensor.
Here we take an example from *: We consider an OLED on aglass substrate (n=1.55), covered by the following layers
(from bottom to top): ito (d=160nm, n=1.85+0.04l ), emissive organic layer (d=72nm, n=2.0) and an optically thick
metal cathode (n=0.18+i2.35). The emitting dipole is situated 40nm bel ow the meta cathode and radiates at a
wavelength of 550nm. Figures 1-3 show the directions and magnitude of the Poynting vector fields in the x-z plane on a
logarithmic scale for the the x dipole (lying horizontally in the plane), they dipole (pointing out of the plane) and z
dipole (pointing upwards). One clearly recognizes the plasmonic modes at the interface of the organic layer and the
metal cathode and the waveguiding in the organic and ito layer. The values of the power flowing through the upper and
lower interfaces of the organic layer and into the glass have been calculated for the different dipole orientations: for the
vertical dipole orientation about two times more energy goesinto the metal cathode than for the horizontal one and
about three times more “horizontal” than “vertical” light reaches the glass substrate.
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Fig. 1: Poynting vector field in the (x,z) plane through the dipole.
the arrows give the direction and the shading the magnitude on logarithmic
scale. Thedipoleis oriented in the x direction
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Fig. 2: Poynting vector field in the (x,z) plane through the dipole.
The arrows give the direction and the shading the magnitude on logarithmic
scale. Thedipoleis oriented in the y direction
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Fig. 3: Poynting vector field in the (x,z) plane through the dipole.
the arrows give the direction and the shading the magnitude on logarithmic
scale. Thedipoleisoriented in the z direction
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Fig. 4: configuration used for scattering calculations

3.2 Scattering by single particlesand arrays

In this section we apply the formalism described in section 2.2 and 2.3 to the scattering of the electromagnetic field of
adipole emitter by small cylindrical or spherical inclusionsin an organic LED. We have chosen the structure described

%> and depicted in Fig.4. The cylinders are assumed to have therefractive index of the glass substrate and are
surrounded by the SiN, layer with n=1.9. They have aradius of 200nm and a height of 400nm. For the spheres we
assume the same data, a radius of 200nm and the z |ocation of the centre at 700nm. We have investigated the scattering
by small quadratic arrays of cylinders and spheres with one mesh measuring 600 by 600nm. To obtain the subdivision
of the scatterers into small volumes, they were surrounded by a tight fitting rectangular box. The enclosing box was
then subdivided into 25 by 25 by 25 small boxes of equal size and shape. The scatterer volume was then represented by
the boxes which center belonged to it.
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Fig. 5: Scattering of theradiation of ax dipole by a cylinder depicted in black in the lower picture. For comparison the
upper picture shows the unscattered radiation. Location of the dipole at x=0, y=0 and z=-180. The arrows give
the direction and the fal se colours the logarithm of the magnitude of the Poynting vector. Glassis at the bottom!
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Fig.6: scattering of x dipole from single
cylinder in xy-plane at z=2000.
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Fig. 8: scattering of y dipole from single
cylinder in xy-plane at z=2000
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Fig. 10: scattering of z dipole from single
cylinder in xy-plane at z=2000nm
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Fig.7: scattering of x dipole from single
sphere in xy-plane at z=2000
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Fig.9: scattering of y dipole from single
sphere in xy-plane at z=2000 .

7

0
5000 5500 6000 6500 7000 7500 8000 6500 9000 9500 10000 log

1 sphere z dipole

Fig. 11: scattering of z dipole from single

sphere in xy-plane at z=2000nm






